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Abstract. A constrained dynamical formulation of the damped harmonic oscillator system 
has been obtained. The generalised classical Hamiltonian based on the Dirac theory and 
its quantal counterpart are given. With suitable gauge choices and perturbation technique, 
a quasiconstrained example shows that the wavepacket spreads and the uncertainty principle 
holds. The propagator is also derived. A discussion on the necessity and physical meaning 
of the constrained treatment is also included. 

1. Introduction 

Owing to its simplicity in calculation and in concept, a phenomenological approach 
to the problems of quantal dissipative systems can be considered as a viable alternative 
to the microscopic methods based on the density matrix. Whereas a large amount of 
literature exists (see, for example, Caldirola (1941) and Kanai (1948) on the time- 
dependent Hamiltonian, Kostin (1975) on the non-linear Hamiltonian and Hasse (1975) 
and Dekker (198 1) for reviews), the phenomenological quantal dissipation problem 
has remained unsolved for more than forty years owing to the lack of a suitable 
Lagrangian and/or Hamiltonian self-consistently describing the quantum mechanics 
of a damped particle (see Brittin 1950, Greenberger 1979, Ray 1979, Cervero and 
Villaroel 1984). 

In this paper a new treatment of the problem is presented. Instead of taking the 
system as a unconstrained dynamic system as previously perceived by all researchers 
working on this problem and as proved unsuccessful by others (Ray 1979), we consider 
it to be a constrained system described by a constrained generalised Hamiltonian. This 
fundamental change from the previous unconstrained approach is deemed necessary 
if one is to be consistent with the Hamiltonian formalism. In other words, if some of 
the interaction with its phenomenological surrounding medium or its internal structure 
is to be taken into account, the dynamics must be generalised to include constraints. 
Our generalised Hamiltonian is the mechanical energy which decays exponentially 
with time, consistent with the classical result. This Hamiltonian will be determined 
from the null total system energy Hamiltonian. 

In 0 2 we give the detailed derivation of the generalised Hamiltonian and its physical 
implications. In 0 3 we present a short preliminary discussion of the quantisation of 
the problem based on perturbation. Section 4 presents the propagator, wavepacket 
amd uncertainty product as well as a discussion on the first-order solution of the 
Schrodinger equation. In § 5 we shall conclude our paper with remarks about other 
damped systems. 

0305-4470/87/144745 + 11$02.50 @ 1987 IOP Publishing Ltd 4745 
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2. Generalised (constrained) Hamiltonian 

For the underdamped harmonic oscillator Newton’s equation and solution are 

x +  y x + w 2 x = 0  (2. la)  

x = xo exp( - yt/2) cos(flot + a) (2 . lb)  

where a,= (U’ - ~ ~ 1 4 ) ” ~  is the classical shifted frequency and (Y is an  arbitrary phase. 
Multiplying by mx and  integrating ( 2 . 1 ~ )  we have 

1‘ imx2++mw2x2+ my x2  d t  = c. 

Substituting (2.lb) into (2.2) causes the LHS to vanish. Thus the total system energy 
is always zero or the system Hamiltonian Ho is always a null Hamiltonian. If canonical 
equations of motions are used, (2.2) with p = mx and dx = x d t  gives 

x = p / m  ( 2 . 3 ~ )  

-p = mu’x + yp (2.3b) 

provided that p is taken as an  implicit function of x, i.e. that a constraint relation 
exists by use of the implicit function theorem. Although (2.3) correctly gives the 
equation of motion, it is purely formal because a null Hamiltonian implies constant 
x and p, which is obviously impossible. We therefore have to consider the motion 
being constrained with the constraint equation 

4 1 ( ~ , p ) = p 2 / 2 m + m w 2 x 2 / 2 +  y p ( s )  d s = O  (2.4) i’ 
where = is Dirac’s weak equality notation (see Dirac 1964). Since we are interested 
in the mechanical part of the energy another constraint equation involving mechanical 
energy is to be sought and can be derived from (2.4). Let us consider p in (2.4) as a 
function of x and differentiate (2.4) with respect to x to obtain 

( 2 . 4 ~ )  ( p l m )  d p / d x +  mw2x+ yp = O  

which can be integrated to give the following constraint equation: 

+Ax, P)  = Wx,  P)  exp(ye(x, p)lf lo)  - E = 0 (2.5) 

where 

1 
2m 

Q =-(p+fmyx)’++ma;x* o;= w2-+y2 

e = tan-’[mfl,x/(p+fmyx)] (2.7) 

and E is the integration constant specified as the mechanical energy at x = 0. Without 
loss of generality we assume x = 0 when t = 0, and thus E is the initial kinetic energy. 

According to Dirac’s constrained dynamics (Dirac 1950, 1958, 1964, Sudarshan 
and Mukunda 1974, Hansen et a1 1976, Sundermeyer 1982), the generalised Hamil- 
tonian of the system can be written as 

H T  = Ho + A I 4 I + A 2 4 2  = A I 4 I A z 42 (2.8) 
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where A , . 2  are Lagrangian multiplier functions and  the equation of motion for any 
phase plane function g(x, p )  is given by 

g =Al{g, 4 1 1 + A 2 k  4 2 1  (2.9) 

where the brackets are Poisson brackets (PB)  and the RHS is actually {g, H T } .  The 
consistency conditions require &, = 0 and 4, = 0, which will characterise whether 
constraints 41,2 are first class or not. Before doing that, we note 

a4,/ax = mw 'x + yp d 4 l / a P  = P / "  (2.10) 

a4,lax = ( m w * x +  YP) exp(y8/fio) 
a4,Iap = ( p / m )  exp(y8/%) (2.11) 

so that 

(2.12) 

Letting g = 41,2 in (2.9) and  using (2.12) we see that remain arbitrary. (2.12) shows 
that 4,,2 are both first-class constraints and there is no second-class constraint. Since 

are arbitrary HT is not unique. We shall determine A , , 2 ,  and hence H T ,  by setting 
two gauge conditions as follows. Letting g = x  and p in (2.9), respectively, we have 

where 

( 2 . 1 3 ~ )  

(2.13 b )  

( 2 . 1 3 ~ )  

(2.13d) 

Comparing (2.13) with the equations of motion (2.3), we may choose 

A 1 = O  A > =  A =exp(-ye /n , ) .  (2.14) 

Dirac (1964) pointed out that the Lagrange multipliers must be functions of time (see 
also Lanczos 1970). This can be  achieved from either the solution of the equation of 
motion or a constant of the motion. Gettys et a1 (1981) proved that 

e=n,r+e,. (2.15) 

The constant Bo is unimportant and we shall set Bo zero. Thus (2.14) becomes 

A l = O  A 2  = A = exp( - y t )  = exp( -yB/Ro) (2.16) 

where the weak equality is used to mean that the last equality shall be used in the 
equations of motion only after the PB or  any differentiation has been worked out. 

Substituting (2.16) into (2.5) and (2.8), we have 

H T  = exp(-yz)Q exp(yBIR,) -exp(-yz)E (2.17) 

where 0 and 6 are given by (2.6) and (2.7). It is noticed that our generalised 
Hamiltonian HT is expressed in terms of the constraint obtained from the null Hamil- 
tonian which is derived from the equation of motion. Therefore the constraint is of 
secondary type; there is no primary constraint here. The distinction between secondary 
and  primary constraints becomes unimportant if one works out the constrained 
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dynamics from the Hamiltonian rather than the Lagrangian (Dirac 1950). As far as 
the gauge condition is concerned, the special choice of A I  = 0 is made because any 
other choice would have to include in the generalised Hamiltonian, which is difficult 
to work with. The physical state in any case does not depend on the gauge. We do 
not consider (2.15) as a constraint equation as it is independent of (2.4). 

If one is also interested in the Lagrangian, one can obtain it from LT = p x  - A>C#I~ 
and p = mx as given by 

L,(x, x) = m x 2 - e x p ( - y t ) f m [ ( x + ~ y x ) 2 + ~ ~ x 2 ]  exp [lo -tan-’ (x:gx)] - (2.18) 

where the term exp(-yt)s has been omitted as it does not affect the equation of motion 
in Lagrangian dynamics. It can be easily shown that the Lagrangian equation recovers 
(2 . la )  when the weak equality rule for using (2.16) is followed. 

The physical significance of the Lagrange multiplier and the auxiliary (constraint) 
conditions has been elegantly described by Lanczos (1970). He showed how to describe 
and account for the reaction of the system back to the source of the forces or to the 
external world. Most people are interested in constrained dynamics from the quantum 
field theory viewpoint; non-relativistic classical point mechanical constrained systems 
are usually considered to be of little physical relevance (Goldstein 1980). Our treatment 
of the damped oscillator as a constrained dynamic system is perhaps a counterexample 
if it is understood in the sense of Lanczos (1970). 

It is interesting to elaborate on the implications of (2.17). Since the term exp(-yt)s 
is a purely time-dependent function and does not affect the equation of motion, (2.17) 
can be rewritten as 

H = A ( t ) @  exp( yB/Ro) A ( t )  =exp(-yt)=exp(-yO/Ro).  (2.19) 

The equation of motion (2.9) becomes simply 

g = {g,  W .  (2.20) 

@ = p 2 / 2 m + f m o z x 2 + + y ( x p + p x ) .  (2.21) 

In (2.19) @ is essentially the mechanical energy ‘kernel’ which is given by 

The last term represents the interaction between the mechanical system and the external 
world and it gives the energy lost to heat. The exponential factor being proportional 
to y is a macroscopic description of the internal thermal motion of the phenomenologi- 
cal medium with which the particle interacts. 

As far as the null Hamiltonian or constraint equation (2.4) is concerned, we want 
to point out that the integral is the integration of twice the Rayleigh dissipation function 
(Landau and Lifshitz 1980). Whereas they argued that a purely (unconstrained) 
mechanical treatment of a dissipative motion is impossible, they nevertheless foresaw 
that the motion would involve a previous history and hence integral operator. This 
has been made evident by the integral terms of (2.2) and (2.4). 

3. Quantisation 

Quantisation of constrained dynamics is notoriously difficult (Sundermeyer 1982) due 
to the perennial problem of operator ordering. We shall present a perturbation scheme 
guided by physical considerations. No sophisticated methods such as path integral 
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quantisation (Faddeev and Slavnov 1980) or others (Nakamura and Mishima 1984, 
Sundermeyer 1982) will be discussed. 

The Schrodinger equation is obtained from (2.19) 

H+ = A @  exp(y6/Qo)+ = ih a+ /a t .  (3.1) 

In addition, supplementary conditions on + are (Dirac 1964) 

dl+ =pz+/2m + mw2x2+/2+ y (1‘ p dx) II, = 0 

&+ = @ exp( y6/flo)+ - E+ = 0. 

( 3 . 2 ~ )  

(3.2b) 

Let us assume Ro is sufficiently large so that y / n 0  is small and the time t is small so 
that yt is small. These approximations are physically interesting because the damping 
may actually be turned on for only a limited time period and y/fko for practical quantal 
systems is usually small (underdamping). Thus we are interested in a quasiconstrained 
quantal system where damping acts for a short time. Then the exponential factor in 
(3.1) can be expanded as a power series in 6. We find it convenient to define the 
operator z to be the argument of the arctangent in (2.7) and use the series expansions 
(Abramowitz and Stegun 1964) for 1 + z 2  # 0 to obtain 

exp( y o / a o )  = 1 + 62 + f 8 * z 2  (3.3) 

z =f[(p+imyx)-’mfk,x+ mflox(p+fmyx)-’] .  (3.4) 

where 6 is the perturbation order parameter y / a 0  and z is the symmetrised operator 

If we retain terms up to the first order of Sz in (3.3) then, after symmetrising the 
Hamiltonian in (3.1) and perturbing the wavefunction up to the first order of 8, 

+ = *o+ w ,  (3.5) 

the Schrodinger equation (3.1) becomes 

iA[(1+ S z ) @ + @ ( l +  Sz)](+,+ S*,) = iha(+,+ S+,,)/at 

A@+, = ihat,b,/at (3.6) 

A @ G 1  -ihd+,/dt = - - ~ ( x ,  t )  

7 = & i ( z @ + @ z ) ~ , b ~ .  

Let K(x, x’; t, r’) be the propagator of (3.6). Then 

(A@-ihd/dt)K = -ihS(x-x’)S(t  - t ’ )  
s 

CL1 =+ 11 dx’dt ‘  ~ ( x ’ ,  t’)K(x, x’; t, t ’ ) ,  

(3.9) 

(3.10) 

The meaning of (3.8) can be clarified as follows. Consider 

( p + f m y x ) - I x =  F (3.11) 

where ,y is a known function of x and t and F is an unknown function of x and t. 
Multiplying ( p + f m y x )  on both sides of (3.11) we have 

,y = ( p + f m y x ) F  = -ihaF/ax+fmyFx. 
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Solving for the particular integral of F we get 

F = - exp( -fax’) CY = my/2ih.  (3.12) 5 1 
exp( -ax2 /2 )x  d x  

h 

Similarly let 
( p + l m y x ) - ’ x X + x ( p + t m y x ) - ’ X  = x  = 2 G [ ~ ( x ,  t ) ]  (3.13) 

where we emphasise that G depends on the known function x. Premultiplying ( p +  
fmyx) and employing (3.1 1) and (3.12) we solve another first-order differential equation 
and obtain 

G[x] = ( 1 / h )  exp(fax2) d s  exp(-fas2) I‘ 
Comparing (3.4) with (3.13) enables us to rewrite (3.8) as 

7) = f Amno{ G[xIx =a io  + @ G [ x I x = ~ J .  

(3.14) 

(3.15) 

Along the same lines we can make the meaning of ( j p  dx)$  clear. 
Let ( j p  d x ) +  = I and take the partial derivative with respect to x. We get 

p + +  (I/$)a$/ax = aI/ax p = -iha/ax (3.16) 

I = -ih+ In $ + c$ (3.16a) 

where the last term is the homogeneous solution of I. Thus (3.2a) becomes 

4 ’+=  - ( h 2 / 2 m ) a 2 $ / a x 2 + f m ~ 2 x 2 $ - i h y $  In $+yc~1 ,=0 .  (3.17) 

The coefficient c, strictly speaking, is either a function of t or a complex constant. 
Here we may take it approximately as a slowly varying function of x. It can be 
determined as follows. We note that the operator I p  d x  must be Hermitian and thus 
I$-’ - I * + * - ’  = 0. From (3.16a) we obtain c = i Im c = i( h/2)  In($*$) where In($*$) 
is assumed to be sufficiently smooth and slowly varying. 

The supplementary conditions (3.26) and (3.17) select, from the solutions (both 
physical and unphysical ones) of the Schrodinger equation, only the physical solutions, 
i.e. those which satisfy these conditions. The Hilbert space is said to be restricted to 
its physical part (Sundermeyer 1982, Shanmugadhasan 1963). As $(x, t )  depends on 
its initial wavefunction, say +(x, 0), not all functions will develop in time into 
admissible solutions to a general constrained quantal system. This is an important 
difference between constrained and unconstrained quantal systems. In a quasicon- 
strained quantal system as treated here, however, the restrictions imposed on $(x, 0), 
and hence on +(x, t ) ,  are not as relevant as in the total constrained quantal systems. 
Another important difference between the two quantal systems is the mechanical energy 
operator E. In constrained systems the mechanical energy operator and the Hamiltonian 
may be unequal. To see this let us compare (3.1) and (3.26). Consistency between 
these two equations requires us to set E = ihh-’d/dt = i h  exp(yr)a/at, a result not noted 
by Hasse (1975) who, treating dissipative systems as regular systems, correctly stated 
that the definition of an energy operator is still open, since the energy is not a constant 
of motion. For our system the constraint equation (3.26) is proved to be equivalent 
to the Schrodinger equation (3.1) and it will no longer be considered as a supplementary 
condition on 4,. The only such condition is thus (3.2a) or (3.17). 



Constrained dynamics of a damped harmonic oscillator 475 1 

If the gauge conditions were so chosen that A ,  = 1 and A 2  = 0 then the Hamiltonian 
would no longer be (2.17). From (2.8) it would become H = 4, and the Schrodinger 
equation (see (3.17)) would be 

- ( h 2 / 2 m ) a 2 + / J x 2 + t m w 2 x 2 +  -ihy+ In + + i ( h y / 2 ) +  In(+*+) = i f i a+ /a t  (3.18) 

and the only supplementary condition on I/I would be (3.2b) &I/I = 0 where E is the 
mechanical energy operator. It is easily shown that (3.18) likewise gives the Ehrenfest 
theorem (Schiff 1955) 

d(x)/dt = ( p ) / m  -d(p)/dt  = mw2(x)+  y ( p ) .  (3.19) 

It is interesting to note that the non-linear Schrodinger equation (3.18) is similar to 
that of Schuch et a1 (1983), obtained from a non-linear field theory and  to that of 
Kostin (1975). For simplicity we shall not discuss the A ,  = 1 gauge further except to 
point out that a / J t  in (3.18) should be zero as can be seen from (3.17) and the 
supplementary condition (3.2b) is the same as (3.1). Thus the two gauge choices 
( A ,  = 1,O) are physically equivalent (see Fradkin and Vilkovisky 1977). 

Thus our  system is governed by two Schrodinger equations (Dirac 1950) of which 
the first equation 4,+  = 0 is time reversible since C$l is real (see (3.17)), implying the 
total system energy is conserved and the second equation &I/I = 0 is time irreversible 
since C$2 is complex, implying the mechanical energy is not conserved. 

4. Propagator 

4.1.  Heisenberg operator solution 

The Green function can be obtained either from the Feynman path integral (Feynman 
and Hibbs 1965) or from the solution of the Heisenberg operator equation of motion 
(Landovitz et a1 1983). We shall use the latter formalism for its practical calculation 
power. The theory of Landovitz et a1 is based on the fact that the basic operators x H ,  
pH in the Heisenberg picture are linearly related to those in the Schrodinger picture 
through unknown time-dependent coefficients such as a( t ) ,  b( t ) ,  c(  f )  and d (  t ) .  Know- 
ing these coefficients enables one to determine xH and pH which, in turn, enable one 
to find any observable (including the propagator for the Schrodinger equation) built 
up  from x H  and pH via unitary transformations. The advantage is that the coefficients 
are formally related to solutions of the classical equation of motion which we already 
know. In matrix form the coefficient matrix R ( t )  is the solution of the first-order 
differential equation system 

R (  t )  = M (  t ) R ( t )  ( 4 . 1 ~ )  

R(0)  = I (4.lb) 

and the following condition is required for [ x , ,  pH] = i h :  

ad - bc = 1 (4.2) 

where I is the identity matrix and 
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On using (4.2) and (4.3), (4.1) becomes 

(4.4) 

From the equation for U and C we can eliminate a and U to obtain 

i.+ y ~ + e x p ( - 2 y t ) ~ i c = 0 .  (4.5) 

In a similar manner we obtain 

d + yd + exp( -2yt)Rid = 0. 

Thus 

c = exp(-yt/2)(AI sin 5 +  B ,  cos 5 ) 5 - ” 2  
d = exp(-yt/2)[A2 sin 5 +  B2 cos 5]5-”’  

where 5 = (R,/y) exp(-yt). 
It can be shown from (4.4) that 

(4.6) 

(4.7) 

(4.8) 

a = -(exp(yt)C+yc/2)/mw2 b = -(exp(yt)d + yd/2)/mw2. (4.9) 

The unknown constants A ,  and B ,  can be determined from c(0) = 0 and a(0)  = 1 as a 
consequence of (4.lb). Similarly A2 and B2 can be determined from d(O)= 1 and 
b(0) = 0. For 6 = y/Ro small we have 

a = d =cos a (4.10) 

b = ( m a o ) - ’  sin a c=-(mw2/R,) sin a. (4.11) 

Equation (4.2) can be verified by substitution of the above equations. Landovitz et a1 
(1983) have shown that the propagator K(x, x’; t )  is given by 

K =f( t )  exp[ig(dx2+ a ~ ’ ~ - 2 x x ’ ) ]  (4.12) 

f( t )  = ( g / i r ) ’ ”  (4.13) 

g = 1/2hb. (4.14) 

a = a ( t )  = 8-I- 5 = (1 -exp(-yt))il,/y 

Substituting (4.10) and (4.11) into the above we have 

~ ( x ,  x‘; t )  = f ( t )  exp[ig(t)(x2 cos a + x ”  cos a -2xx’)l 

f(t) = (mn0/2ih.rr sin a)”2 g (  t )  = mR0/2h sin a. 

(4.15) 

(4.16) 

In comparison with the propagator of the undamped harmonic oscillator, we see that 
the propagator here is different only in a. As yt -, 0, a -, w t  and they become the same. 

4.2. Wavepacket 

Consider the Gaussian wavepacket 

$,Ax’, 0) = N exp(ik,x’- x”/4a2) N - I  = (2ra2)1/4. (4.17) 

It will evolve in time according to 

(4.18) 
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When (4.15)-(4.17) are substituted into (4.18), then with the help of 
X 1 / 2  J-, dy exp(-ay’+ by) = ( z )  exp( b2/4a) (4.19) 

we have 

+,(x, t )  = W exp(-Ax2+ Bx) (4.20) 

W=f(t)(2a)”’(2~)”“(1 +i4ga2 cos a)”’A-’ exp[-(koa/A)2-i4kta4gA-2 cos a ]  
(4.21) 

A = ( 2 g a / A ) 2 + i ( 1 6 g 3 a 4 A - 2 ~ ~ ~  a - g c o s  a ) = A , + i A i  (4.22) 

B = 4 k , g a 2 A - 2 + i 1 6 k o g 2 a 4 A - 2 ~ ~ ~  a = Br+iBi  (4.23) 

A’= 1 + (4a2g COS a)’. (4.24) 

Since +, is normalised W can be shown to satisfy 

1 W1’ exp(-2Arx2+2B,x) 

I WI’(T /~A, ) ’ ’~  exp(Bf/2Ar) = 1. 

In order to calculate the expectation values we need 

( 4 . 2 5 ~ )  

(4.25b) 

( 4 . 2 6 ~ )  
oc 1 / 2  b 5-.. d y y e x p ( - a y ’ + b y ) = ( ~ )  g e x p ( b 2 / 4 n )  

dyy2  exp(-ay2+ by) = (3 - ”’$( 1 +:) exp(b2/4a).  (4.26b) 

On using (4.25) and (4.26) the expectation values of x and x2 are given by 
3) 

(x) = J +$x+, dx = Br/2A, 

(x’) = (1 + B:/A,)/4Ar. 

(4.27a) 

(4.27b) 

--r 

Using (4.25), (4.26) and the identities 

a+,/ax = +,(-2Ax + B )  a2t,bo/dx’= ( B 2  - ~ A ) + , - ~ A B x + ~ + ~ A ~ x ‘ + ,  (4.28) 

we have 

( P) = h ( Bi - AiBr/Ar) ( p2) = (p)’+ h 2 ( ~ , +  A ~ I A , ) .  
Since (Ax)’=(x’)-(x)’ and (Ap)2=(p2)-(p)2,  (4.27) and (4.29) give 

(4.29) 

AxAp = (A/2)[1 +(A,/A,)’]”’. (4.30) 

Substituting (4.22)-(4.24) into (4.27), (4.29) and (4.30) we obtain 

(x) = hk, sin a / m R o  ( x 2 ) = ( h  sin a / 2 m a R 0 ) 2 + ( a  cos a)’+(hkosin a / m R o ) 2  
(4.31) 

(p)  = hk, COS a 

(p’)=(hk,cos a ) 2 + { 4 a 4 ( h m ~ o ) 2 + [ ~ a 4 ( m R o ) ’ - h 2 ] 2 s i n 2  a cos’a} 

x {4a2[ h2  sin’ a +4a4(mno)’  cos’ a]}-’ 

AxAp = (h/2){1 +[(2a2mRO)’ - h2I2(sin a cos a)2/(2a2mn0h)2}1’2. 
(4.32) 

(4.33) 
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The expectation value of ( x p  + p x )  can be easily shown to be -ih - i2h ( -2A(x2) + B(x)) 
which becomes, upon using (4.27), -2h(2Ai(x2)- B i ( x ) )  or 

(xp+px) = -2h cos a sin a [ 4 ~ ~ ( m f l ~ ) ~ -  h2 ( l  + k$la2)]/4a2mhflo. (4.34) 

Equation (4.33) shows that the packet is a minimum uncertainty wavepacket at 
t = 0 but pulsates afterwards only for finite time before becoming minimum again. For 
comparisons with the strangled harmonic oscillator see Colegrave and Kherabady 
(1984). From ( 4 . 2 5 ~ )  

I$ILo = I WIZ exp(k&%/2g2) exp[-(x - ko/4g)2/2a’21 

2a‘*= (2A,)-’ 

and from (4.17) 

:=, = exp( -x2/2u2)/(2m2)”*.  

Thus its centre pulsates in time and is located at ko/4g = hko sin a/2mf10 starting at 
x = 0 when t = 0. Its width is a at t = 0 but spreads in time periodically since the width 
for t > O  is 

a’ = a[cos2 a + ( h  sin a / 2 m ~ ~ a ~ ) ~ ] ~ ’ ~  

with a non-classical frequency a /  t = fl,[ 1 - exp( - y t ) ] /  yt. All these features are quite 
different from those obtained with unconstrained dynamics (see Hasse 1975). 

4.3. Discussions on $I1 

For $Io as shown in (4.20) the function G[x] in (3.14) can be evaluated by using the 
integral (Abramowitz and Stegun 1975) 

d x  exp[-(ax2+ 2bx + c)] = exp[( b 2 -  a c ) / a ]  erf(a1I2x + b / a ’ ” )  I 
e r fz  =2x-‘12 exp(-z2) L Z 2 k + l  

k = O  1 x3 x . .  . x (2k+  1) 

and series expansions similar to the above, obtained by repeated integrations by parts. 
For the calculation of G[@+b0], (4.28) can conveniently be used. Substitution of (3.15) 
into (3.10) on using (4.15) and (4.16) where we make the change t - ,  t - t’ (see also 
(4.10)) enables us to calculate $I, by integration. It is suggested that the space integration 
be carried out first as the time integration is more complicated. For the case where 
y t  + O  with y # 0 the Hamiltonian becomes time independent and the calculation of 

can be simplified. 

5. Conclusion 

A self-consistent constrained Hamiltonian formalism for an underdamped harmonic 
oscillator has been formulated. Its quantisation scheme as a constrained quantal 
dynamic system with suitable gauge conditions (the A ,  = 0 gauge) has been presented. 
We have shown that the Hamiltonian can no longer be considered as a regular 
unconstrained one; it must instead be generalised in order to account for the interaction 
between the damped oscillator and its medium. We have taken a quasiconstrained 
case as an example, based on a perturbation technique, to show that the Gaussian 
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wavepacket spreads in time periodically together with an oscillating centre and that 
the Heisenberg uncertainty principle holds without any controversy. 

Our theory is sufficiently general for further investigations of other physically 
interesting quantities such as transition amplitudes, transition elements, scattering 
matrix elements and coherent states. Our theory can be expanded to the system of 
many damped oscillators. Its generalisation to other types of damped particle systems 
such as the damped free particle is straightforward. In  this case (2 .4)  and (2 .4a )  still 
hold provided we set o = 0. Equation (2 .5 ) ,  however, becomes & = 0 - E = 0 where 
0 = ( p  + m y ~ ) ~ / 2 m .  For the damped forced particle there is no null Hamiltonian and  
Ho # 0 as the potential is attractive and the total system energy no longer zero. The 
first equality in ( 2 . 8 ) ,  however, remains true. 91,2 can also be similarly obtained. These 
and  other interesting systems will be presented in the future. 
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